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Oligonucleotides serve as hybridization probes, primers, and Table 1. UV-Melting Points? (°C) of DNA Duplexes

biomedical agents. DNA chips are arrays of immobilized oligo- duplex 150 mMP 1M AT, to control (v)°
nucleotides for massively parallel hybridizatibhe sequence (1) 316+ 1.7 335+ 05 .
selectivity of oligonucleotides themselves is limited, and cross  (1a) 50.6+ 0.4 55.3+ 0.7 19.0/21.8
hybridization between strands with partial complementarity limits ~ (1b) 39.1+3.9 n.d. 7.5+
the usefulness of DNA chigsThe termini of duplexes are hot spots 83%22 jg'gi éé gzlﬁ 8'? g'ggg'g
of low base pairing fidelity due to fraying and few neighboring (1e) 51.9+ 0.4 55.8+ 0.2 20.3/22.3
base pairs affected. Even for short oligonucleotides, a mismatch at  (1f)2 43.9+0.7 47.7£0.3 12.3/14.2
the terminus lowers the UV-melting point by only a few degrees (legv)?? gg'gi ég gg'ﬁ 8'2 11;3}/712'6
and the free energy of binding byl kcal/mol, both for DNA 2Te? 382405 45.5+ 0.6 8.4/9.4
and for RNA# This is less than the variation in binding constants 2Cv:9 32.7+0.3 38.8+ 0.9 —/—
between strands with different sequence and G/C coh@etause gg\‘i?o g‘l"-gi 8-2 gggi g'g 12;2/’_11-5
in a typical DNA chip experimert,over 1G probe sequences 2Ae10 36.0+ 0.9 42.9+ 05 4.5/7.0
compete for their targets, the low selectivity at the termini is 2Gv:8 30.0+ 1.0 38.5+ 3.2 —/-
significant. 2Ge8 41.2+0.3 46.9+ 0.4 11.2/8.4
. . e 2Tv:11 27.2+0.7 35.2+£ 0.5 -/
Since nature did not evolve DNA to serve as a hybridization 51477 36.94 0.7 45.4+ 1.7 9.7/10.2
probe, but as a polymeric carrier of information read by fidelity- 3vi12 <15 19.0+ 0.5 /-
enhancing polymerases, chemically modifying oligonucleotides may ~ 3h:12 17.3+0.8 25.2£0.7 —16.2
. N . 3i:12 22.6+0.7 33.0+£ 0.4 —/14.0
improve fidelity. Some polymerase primers employ short sequences 312 348+ 1.0 435+ 0.9 /245
with fidelity-enhancing molecular appendages to achieve improved  3k:12 19.1+0.9 27.4+0.9 —18.4
selectivity® but routine protocols for DNA chips do not employ 3l:12 41.94+0.8 51.7+ 1.4 —132.7
3m:12 n.d. 24.6+ 1.3 —/5.6

fidelity-enhancing elements for the termini of DNA probes. Wider
Searches for such eIemenFs have Dbeen limited _to acylamldo aMean of threeT,'s + SD at pH 7, 3.0+ 0.8 «M strand concentration
substituentsthat have to be introduced through peptide coupling (entries 1+8; 19-25), or 1.5+ 0.2uM strand concentration (entries-98).
to aminodeoxynucleotides. Here, we report on fidelity-enhancing ° [salt];centrles +18, NH,OAc; entries 19-25, NaCl in 10 mM phosphate
5'-caps that can be introduced via automated phosphoramiditePUffer-©At 150 mM/1 M salt.

chemistry. Table 2. Melting Points for Duplexes with Terminal Mismatches
The present caps are stilbenes, a class of compounds known to

. - . ) dupl ismatch Tw (O ATy AT, for control duplex®
bind to DNA&? Stilbene-DNA conjugates form very stable bridged Z;pz m':_méc = 8(;0 5 07 l Cozml e
. 0 e . . . —9. —2.
hairping® and are well known from elegant work on elgctron Teo TG 39.0+ 09 65 12
transfert! To our knowledge, the effect of singly appended stilbenes  2Te'10 TT 36.5+ 0.8 ~9.0 ~19
on base pairing fidelity has not been studied. However, Letsinger, 2Ae7 AA 295+15 134 -2.2
Lewis, Egli, and co-workers have identified dietHéend stilbene- ggg; g:ﬁ gggi 8; :ig'i :2'%
carboxamide's as optimized bridges for hairpins. Singly linked  3j:13 TC 349+ 15 70 _c
stilbenecarboxamida (Figure 1) was the lead for our study. To 3l:14 T.G 37.7£2.4 —4.2 —c
3115 TT 37.4+ 3.7 —4.5 —c

exclude possible (but unlikely) intercalation of the stilbene ring

system, trlcycllcb. was prepared, which cannot intercalate. Six aMean of thre€Ty's + SD; 1.54M strands ad 1 M NH,0AG (entries
different carboxylic acids were coupled on-support to protected 1—6), or 3uM strands, 150 mM NaCl, 10 mM phosphate (entries9y.
DNA with a 5-aminopropanol residue (Supporting Information), P To perfectly matched duplef.Control too low for accurate determination.

followed by deprotection, producinta—g.

UV-melting points of self-complementafia—g showed strong  Te were prepared. Mismatch discrimination at the terminus was
point (Tr) increases (Table 1). Fotd),, the highest melting points  penultimate base pair of sequen2® (Table 2 and Table S1,
were detected, followed kg, and electron deficient pentafluoride  supporting Information). The affinity- and fidelity-enhancing effect
1d. Difluoride 1c, aminomethylistilbenédf, and 1g each gaver, was also found for A:T, C:G, and G:C as terminal base pairs (Tables
increases in the range of-@ °C per modification, whereas tricyclic 1 and 2), withAT,,’s of up to —23.4°C (AAG® of 6.3 kcal/mol)
1b showed only half that effect. For the most duplex-stabilizing for a terminal C:A mismatch. An overhang in the target strand
cap €, phosphoramidites was synthesized, which can be used (sequencdl), a situation typical for hybridization to longer DNA,
directly on DNA synthesizers. With, modified sequencezAe— did not reduce the duplex-stabilizing effect. In fact, th&0.2°C

T Current address: Organic Chemistry Laboratory, ETH Hoenggerberg, HCI, ATr over control for2Te:11at 1 M saltis one of the highekTn's

CH-8093 Zurich, Switzerland. found for cape and octamee. It is greater than that fo2Te:7.
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Figure 1.
4T  4C rich sequences. More elaborate minor groove biridshould bind
other sequences. Modified hybridization probes may thus alleviate
A cap e both poor base pairing fidelity at the termini and the low duplex

stability of A/T-rich sequences, two issues central to increasing
the fidelity of DNA chips. High fidelity DNA chip data are
needed? and they may be obtained, if better biostatistics are
control . S . .

) combined with improved molecular recognition on the chip.
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